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An analytical solution of the boundary-value problem for the equation of radiation transfer in a three-dimen-
sional disperse medium with an arbitrary scattering indicatrix has been found. The solution has the form of
an expansion in the basis of the finite-dimensional functional space of the author’s special G functions that
in full measure take into account information on the angular structure of a real scattering indicatrix.
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Introduction. Since the time the radiation transfer equation (RTE) was obtained, attempts have been under-
taken repeatedly to solve it analytically for an arbitrary scattering indicatrix [1]. They were stimulated by the necessity
of solving practically important problems in various fields of astrophysics, gas dynamics, nuclear power engineering,
atmospheric optics, hydro-optics of disperse media, etc. The main difficulty considered to be unsurmountable in the at-
tempts at analytical solution of the RTE is, as is known, associated with the necessity of taking into account an infi-
nitely large number of terms in expansions of the scattering indicatrix in spherical functions [2]. The desire to
overcome this obstacle has led to the development of numerical [3] and approximate analytical methods such as, e.g.,
diffusion and small-angle diffusion approximations [4] and the Pn approximation of the method of spherical harmonics
[5] that uses only several first terms of the series to represent an indicatrix. Note that for a satisfactory approximation
of, say, the aerosol scattering indicatrix no less than four hundred terms of the series are needed [6]. Therefore ap-
proximate solutions are highly idealized and in many cases do not allow one to obtain physically correct results. Thus,
for example, the method of spherical harmonics leads to errors in the region of small angles of scattering. On the con-
trary, the method of small-angle approximation ignores very important information in the region of large scattering an-
gles. In order to solve the RTE, the method of the author special G functions was implemented in the present work;
the method is free of the indicated drawbacks. It presupposes the abandonment of the infinite systems of spherical
functions [7] for representing the solution and the construction of a new system of special G functions that form a fi-
nite-dimensional functional space.

Formulation of the Boundary-Value Problem for the Radiation Transfer Equation. Let a monochromatic
monodirected beam of light impinge normally onto a three-dimensional volume of a disperse medium with an arbitrary
scattering indicatrix. We will select the volume of the medium in the form of a rectangular parallelepiped oriented
along the Cartesian coordinate system axes 0xyz. The surface Γ of the medium is determined by six faces with the
coordinates: xΓ = 0, a; yΓ = 0, b; zΓ = 0, c and with the corresponding orientations n of their internal normals: nx =
+1, −1; ny = +1, −1; nz = +1, −1. The volume of the medium is V = a × b × c.

The integrodifferential transfer equation [2]

 (�∇) I (r, �) + εI (r, �) = 
εΛ
4π

 ∫ 
�′

x (�⋅�′) I (r, �) dΩ′ + B1 (r, �) , (1)

supplemented by the boundary conditions
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I (r, �) = 0 ,   (n⋅�) > 0 ,   r = rΓ ,   n = nΓ , (2)

determines the boundary-value problem of the theory of radiation transfer in a disperse medium under the conditions of
multiple scattering. Here I(r, �) is the diffuse radiation intensity as a function of the space coordinates r = r(x, y, z)
and of the direction of sighting � = �(ϑ, ϕ); x(�⋅�′) = 4πf (�⋅�′) is the light scattering indicatrix (phase function),
(�⋅�′) = cos θ = μθ (in what follows the subscript at μ will be omitted); Λ = σ ⁄ ε is the probability of survival of the
light quantum (single scattering albedo); ε and σ are the volume index of attenuation and scattering of light, respectively;
B1(r, �) = (1 ⁄ 4π)σx(�⋅�0)πF0 exp (−εz) is the function of the sources of single scattering. In solving the problem, the
scattering indicatrix and the function of sources are assumed to be given.

System of Orthogonal G Functions of a Special Functional Space. A qualitative analysis of the RTE shows
that its properties differ substantially from the properties of the classical equations of mathematical physics. The
method of spherical harmonics that was well developed for their solution does not yield the desired results in the case
of RTE. In order to solve the problems of the theory of radiation transfer it is applied only in the simplest cases and
is related to the class of approximate methods. From the analysis of integrodifferential equation (1) containing a dif-
ferential operator in the form of a derivative with respect to direction and an integral operator in the form of a colli-
sion integral, it follows that it is necessary that for each of them different orthogonal functions be used which,
however, could satisfy the characteristic properties of the RTE symmetry. To construct such functions as an initial sys-
tem we will select a system of independent functions �Uj(μ), j = 0, 1� that are genetically related to the RTE. The
condition of this relationship is the determining one for constructing a system of G functions. By linear transformation
we will find auxiliary functions Ψl(μ), l = 0, 1, 2 that can be conveniently written in the form of matrix repre-
sentation:

⎡
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⎣

⎢

⎢
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⎥
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⎥
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⎡

⎢

⎣
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⎢

0

g0 (μ)
g1 (μ)

⎤

⎥

⎦

⎥

⎥
 . (3)

The one-dimensional functions gl(μ), l ≤ N = 1, in Eq. (3) are determined by normalizing gl(μ) = Ψl(μ)(Nl)
−1 begin-

ning from g0(μ) = U0(μ)(N0)−1. The square of the normalizing factor Ni is calculated by means of the equation

Nl
2
 = 

2l + 1
2

 ∫ 
−1

1

[Ψl (μ)]
2
 dμ . (4)

It is obvious that for the values of the index 2 ≤ l < ∞ all the functions Ψl(μ) and gl(μ) are equal to zero. The value
of the matrix element a10 in (3) is determined based on the requirement of the orthogonality of the auxiliary function
Ψ1(μ) = U1(μ) + a10g0(μ) relative to the function g0(μ) in the interval μ � [−1, +1] according to the equation

a10 = − 
1
2

 ∫ 
−1

+1

U1 (μ) g0 (μ) dμ . (5)

The orthogonal functions gl(μ) obtained in this way satisfy the normalization condition:

 ∫ 
−1

1

gl (μ) gl′ (μ) dμ = δll′ 
2

2l + 1
 , (6)

where δll′ is the Kronecker symbol. The set of functions �gl(μ)� will be supplemented by a system of associated func-
tions �gl

m(μ)� determined by differentiation of gl(μ):

gl
m

 (μ) = (1 − μ2)m
 ⁄ 2 

d
m

dμm gl (μ) .
(7)
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On a single sphere that corresponds to a set of the directions of a light beam � � �[−1, +1] × [0, 2π]�, where μ =
cos ϑ � [−1, +1], ϕ � [0, 2π], we introduce two-dimensional orthogonal functions Gl

m(μ, ϕ) with the aid of the fol-
lowing expressions:

Gl
m

 (�) = AlBGl
m

C
m

gl
m

 (μ) exp (imϕ) ,   l = 0, 1 ;   − l ≤ m ≤ l ,

Al = 
⎡
⎢
⎣

2l + 1

4π

⎤
⎥
⎦

1 ⁄ 2

 ,   BGl
m

 = (Al)
−1

 ∫ 
−1

1

 ∫ 
0

2π

 (1 − μ2)m 
⎡
⎢
⎣

d
m

dμm gl (μ)
⎤
⎥
⎦

2

 dμdϕ ,   C
m

 = (− 1)(m+|m|) ⁄ 2 . (8)

The functions Gl
m(μ, ϕ) constructed in this way are orthonormalized according to the condition

 ∫
Ω
∫ Gl

∗m
 (μ, ϕ) Gl′

m′
 (μ, ϕ) dμdϕ = δll′

mm′
 , (9)

where δll′
mm′ is the Kronecker symbol over the indices l and m. They satisfy the theorem of summation on a sphere:

gl (�⋅�′) = 
4π

2l + 1
  ∑ 
m=−l

l

 Gl
∗m

 (�) Gl
m

 (�′) . (10)

Such is the general scheme of the construction of a set of orthogonal special G functions: �gl(μ), gl
m(μ),

Gl
m(μ, ϕ); l ≤ N = 1; −l ≤ m ≤ l�. The explicit form of the mathematical expressions of G functions can be found pro-

vided account is taken of the condition of precise representation of the real light scattering indicatrix by the sum

x (μ) = ∑ 
l=0

N

xlgl (μ) = ∑ 
l=0

N

 ∑ 
m=−l

l

[Al]
−2

 xlGl
∗m

 (�) Gl
m

 (�′) , (11)

where xl are the coefficients of expansion of the scattering indicatrix in G functions:

xl = 
2l + 1

2
 ∫ 
−1

1

x (μ) gl (μ) dμ . (12)

Having substituted the coefficients (12) into (11), it can be easily seen that the expansion of the indicatrix in the G
functions satisfies equality (11) and the Parseval–Steklov condition of closeness:

⏐⏐ x (μ)⏐⏐
2
 = ∑ 

l=0

1
2

2l + 1
 xl

2
 ,

(13)

where the designation of the squared norm of the indicatrix [8] is used:

⏐⏐ x (μ)⏐⏐
2
 = ∫ 
−1

1

[x (μ)]2
 dμ .

(14)

It is evident that a system of special G functions can be constructed in this way for an arbitrary real light scattering
indicatrix x(μ). For this purpose, in the above-given scheme we should take U0(μ) = 1, U1(μ) = x(μ) as initial func-
tions �Uj(μ)�. Direct calculations for Uj(μ) performed for a complete set of possible values of indices l and m lead to
explicit expressions of the unknown orthonormalized functions Gl

m(μ, ϕ):
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 G0
0
 (μ, ϕ) = G0 (μ, ϕ) = 

⎡
⎢
⎣

1
4π

⎤
⎥
⎦

1 ⁄ 2

 g0
0
 (μ) ,  g0

0
 (μ) = g0 (μ) = 1 ,

G1
0
 (μ, ϕ) = G1 (μ, ϕ) = 

⎡
⎢
⎣

3
4π

⎤
⎥
⎦

1 ⁄ 2

 g1
0
 (μ) ,   g1

0
 (μ) = g1 (μ) = 

⎧
⎨
⎩

3
2

 ⎡⎣⏐⏐ x (μ)⏐⏐
 2

 − 2⎤⎦
⎫
⎬
⎭

−1 ⁄ 2

 [x (μ) − 1] ,

G1
1
 (μ, ϕ) = (− 1) 

⎡
⎢
⎣

3
4π

⎤
⎥
⎦

1 ⁄ 2

 BG1
1

g1
1
 (μ) exp (iϕ) ,   G1

−1
 (μ, ϕ) = 

⎡
⎢
⎣

3
4π

⎤
⎥
⎦

1 ⁄ 2

 BG1
1

g1
1
 (μ) exp (iϕ) , (15)

BG1
1

 = ⎡⎣⏐⏐ x (μ)⏐⏐
 2

 − 2⎤⎦
1 ⁄ 2
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⎣

⎢
⎢
 ∫ 
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1

(1 − μ2) 
⎡
⎢
⎣

d
dμ

 x (μ)
⎤
⎥
⎦

2

 dμ
⎤
⎥
⎦

⎥
⎥

−1 ⁄ 2

 ,

g1
1
 (μ) = 

⎧
⎨
⎩

3
2

 ⎡⎣⏐⏐ x (μ)⏐⏐
 2

 − 2⎤⎦
⎫
⎬
⎭

−1 ⁄ 2

 (1 − μ2)1
 ⁄ 2 

d
dμ

 x (μ) .

Here the light scattering indicatrix x(μ) is selected so that it satisfies the normalization condition:

 ∫ 
−1

1

x (μ) dμ = 2 . (16)

As is seen, Eqs. (15) for the explicit expressions of G functions contain the requirements of differentiability and quad-
ratic integrability imposed on the initial scattering indicatrix. Note that in addition to the mathematical properties such
as, for example, orthogonality, normalization, differentiability, and integrability, the G functions are also endowed with
the physical properties inherent in the real scattering indicatrix x(μ) of a disperse medium that characterize the micro-
structure, shape, and anisotropy of particles, the optical constants of the substance of particles and of immersion, etc.
Therein lies the characteristic feature of G functions. The orthogonal G functions (15) form the finite-dimensional G
space consisting of two subspaces: a one-dimensional subspace that corresponds to the subscript l = 0 and a three-di-
mensional one with the subscript l = 1. In such a functional space the real light scattering indicatrix has an especially
simple form. Thus, applying the summation theorem (10) for each of the subspaces:

g0 (μθ) = 4π ∑ 
m

G0
0
 (�′) G0

0
 (�) = 1 ,   l = 0 ;

g1 (μθ) = 
4π
3

 ∑ 
m

G1
1
 (�′) G1

1∗
 (�) = g1

0
 (μ) g1

0
 (μ′) + [BG1

1 ]2
 g1

1
 (μ) g1

1
 (μ′) 2 cos (ϕ − ϕ′) ,   l = 1 ,

(17)

where (ϑ, ϕ) � ���, (ϑ′, ϕ′) � ��′� it can be easily shown that

x (μ) = ∑ 
l=0

1

 ∑ 
m=−l

l

 [Al]
−2

 xlGl
∗m

 (�) Gl
m

 (�′) = 1 + x1g1 (μ) . (18)

Equation (18) determines an arbitrary scattering indicatrix x(μ) of a real medium. In a particular case, for an idealized
linear indicatrix x(μ) widely used in the approximate transport theory [2] calculations by Eq. (18) yield x(μ)  =
1 + x1P1(μ), where x1 is the first coefficient of the expansion of the indicatrix in the Legendre polynomials Pl(μ).

It should be noted that in the basis of G functions the characteristic surface differs substantially from a single
sphere of directions in a three-dimensional subspace. For an arbitrary scattering indicatrix we deal with a curved space
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whose curvature is determined by the character of the function x(μ). This means that the orthonormal G functions, in
contrast to spherical ones, operate on a nonspherical characteristic surface, where the algebraic vector is assigned by
the components ΩGk

l (�), l = 0, 1; k = 1, 2, 3:

ΩG1
0

 (�) = 1 ,

ΩG1
1

 (�) = [A1]
−1

 [B1
1]−1

 
1
2

 [− G1
1
 (μ, ϕ) + G1

−1
 (μ, ϕ)] ,   B1

1
 = 

⎡
⎢
⎣

1
2

⎤
⎥
⎦

1 ⁄ 2

 ,

ΩG2
1

 (�) = [A1]
−1

 [B1
1]−1

 
1
2i

 [− G1
1
 (μ, ϕ) − G1

−1
 (μ, ϕ)] ,

ΩG3
1

 (�) = [A1]
−1

 G1
0
 (μ, ϕ) .

(19)

In a particular case of a linear scattering indicatrix the characteristic surface (19) is degenerated into a single sphere
of directions with the components Ωk

l (Ω):

Ω1
0
 (�) = 1 ,

Ω1
1
 (�) = sin ϑ cos ϕ = 

⎡
⎢
⎣

2π
3

⎤
⎥
⎦

1 ⁄ 2

 [− Y1
1
 (�) + Y1

−1
 (�)] ,

Ω2
1
 (�) = sin ϑ sin ϕ = − i 

⎡
⎢
⎣

2π
3

⎤
⎥
⎦

1 ⁄ 2

 [Y1
1
 (�) + Y1

−1
 (�)] ,

Ω3
1
 (�) = cos ϑ = 

⎡
⎢
⎣

4π
3

⎤
⎥
⎦

1 ⁄ 2

 Y1
0
 (�) ,

(20)

determined in terms of the spherical functions Yl
m(�). From this it follows that in the three-dimensional subspace the

vector �G
1  = (ΩG1

1 , ΩG2
1 , ΩG3

1 ) does not coincide with the vector �1 = (Ω1
1, Ω2

1, Ω3
1).

From Eq. (20) it is seen that to represent the direction of the beam � in the differential operator of the RTE
it is necessary to use the spherical functions Yl

m(�). The possibility of applying the G functions in the RTE is ensured
due to its property of biorthogonality which the G functions are endowed with relative to spherical functions:

 ∫
Ω
∫ Gl

∗m
 (μ, ϕ) Yl′

m′
 (μ, ϕ) dμdϕ = δll′

mm′
 ⏐⏐Gl

m
Yl

m
⏐⏐ . (21)

Here, the following designation of the binorm is used:

⏐⏐Gl
m

Yl
m
⏐⏐ = ∫

Ω
∫ Gl

∗m
 (μ, ϕ) Yl

m
 (μ, ϕ) dμdϕ . (22)

Note that the system of special G functions introduced in this way is the simplest system of orthogonal func-
tions the expansion into which leads to the separation of variables in the radiation transfer equation. Thanks to this its
exclusive property, one succeeds in separating the angular and spatial variables and in transforming the RTE to a sys-
tem of differential equations for spatially dependent functions.

Transformation of RTE to a System of Differential Equations. The system of G functions together with
the spherical functions Yl

m(�) forms a consistent set of basis functions that is used in what follows for further trans-

526



formations of RTE. First, we will consider the operator of radiation attenuation in a medium; in RTE (1) this operator
corresponds to the Bouguer term εI(r, �) which will be represented as a functional similar to the collision integral:

εI (r, �) � 
ε

4π
 ∫ 
Ω′

xε (�⋅�′) I (r, �′) dΩ′ . (23)

Here, the light attenuation indicatrix xε(�⋅�′) expressed in terms of the Dirac δ function xε(�⋅�′) = 4πδ(�⋅�′ − 1)
has been introduced. With allowance for the properties of the δ function we will find the coefficients of the expansion
of the attenuation indicatrix xε(�⋅�′) in the G functions:

xε0 = 
1
2

 ∫ 
−1

1

2δ (μ − 1) g0 (μ) dμ = g0 (μ = 1) , (24)

xε1 = 
3
2

 ∫ 
−1

1

2δ (μ − 1) g1 (μ) dμ = g1 (μ = 1) . (25)

It is seen that the expansion coefficient xε1 = g1
0 (μ = 1) depends on the value of the indicatrix of scattering in the

direction ϑ = 0o. We will represent the function of sources B1(r, �) by the series

B1 (r, �) = ∑ 
l=0

N

 ∑ 
m=−l

l

 AlIl
 ′m (r) Yl

m
 (�) (26)

with the expansion coefficients expressed by the equation

Il
 ′m (r) = [A1]

−1
 ∫
Ω
∫ B1 (r, �) Yl

∗m
 (�) dΩ ,   l = 0, 1 ;   − l ≤ m ≤ l . (27)

The solution for the intensity of diffuse radiation I(r, �) will be represented in the form of a series in G functions:

I (r, �) = ∑ 
l=0

∞

 ∑ 
m=−l

l

 AlIGl
m

 (r) Gl
m

 (�) , (28)

whose expansion coefficients IGl
m (r) in the G functions are unknown as yet. The substitution of the above-indicated ex-

pansions into the RTE for the diffuse intensity, scattering indicatrix, attenuation indicatrix, vector of direction, and for
the function of sources and the subsequent integration of the RTE over Ω with account taken of the conditions of or-
thogonality (9) and biorthogonality (21) lead to the differential equation

∇J
1
 (r) + 3ε (1 − Λ) J1

0
 (r) = 3εΛJ1

 ′0 (r) , (29)

that couples the spatially dependent characteristics of scattered radiation J1
0(r) and J1(r) and of the sources J1′

0(r). In
the derivation of Eq. (29) we pass from the complex-valued quantities IGl

m (r) in the expansion of the intensity in the
G functions to their real components JGk

l (r):

J1
0
 (r) = JG1

0
 (r) = [A0]

2
 IG0

0
 (r) ,

J1
1
 (r) = ⏐⏐G1

1
Y1

1
⏐⏐ JG1

1
 (r) ,   JG1

1
 (r) = [A1]

2
 B1

1
 [− IG1

1
 (r) + IG1

−1
 (r)] , (30)
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J2
1
 (r) = ⏐⏐G1

1
Y1

1
⏐⏐ JG2

1
 (r) ,   JG2

1
 (r) = i [A1]

2
 B1

1
 [− IG1

1
 (r) − IG1

−1
 (r)] ,

J3
1
 (r) = ⏐⏐G1

0
Y1

0
⏐⏐ JG3

1
 (r) ,   JG3

1
 (r) = [A1]

2
 IG1

0
 (r) .

Here, J1
0(r) denotes the arithmetic mean intensity of scattered radiation in the one-dimensional subspace, and J1

1(r),
J2

1(r), and J3
1(r) are the components of the light vector in the three-dimensional subspace. The second differential equa-

tion that couples J1
0(r) and J1(r) results from computation of the integral over Ω of the RTE after it has been multi-

plied by � and the above-indicated expansions substituted. It has the form

∇J1
0
 (r) + ε (fε1 − Λf1) J

1
 (r) = εΛf1J

 ′1 (r) ,   f1 = 
x1

3
 ,   fε1 = 

xε1
3

 , (31)

where J′1(r) is the light vector for the function of sources. Thus, the integrodifferential equation of radiation transfer
(1), after being integrated in the basis of the special G space, is transformed to a system of deferential equations (29)
and (31) for spatially dependent functions J1

0(r), J1(r) = (J1
1, J2

1, J3
1), J1′0(r), J′1(r).

For the intensity I(r, Ω) of diffuse radiation, with relations (19) and (30) taken into account, the following
identical expansions are valid:

I (r, �) = ∑ 
l=0

1

 ∑ 
m=−l

l

 AlIGl
m

 (r) Gl
m

 (�) = ∑ 
l=0

1

 ∑ 
k=1

3

 JGk
l

 (r) ΩGk
l

 (�) , (32)

where the right-hand side has the form of a scalar product in the basis of real orthogonal components ΩGk
l (Ω). Thus,

in order to solve the RTE for the intensity I(r, Ω), it is required to find the real components of the four-dimensional
algebraic vector JG(r) = (JG1

0 , JG1
1 , JG2

1 , JG3
1 ) by solving the system of differential equations (29), (31).

From Eq. (31) we express J′1(r) in terms of J0
1(r):

J
1
 (r) = − 

1
ε (fε1 − Λf1)

 [∇J1
0
 (r) − εΛf1J

 ′1 (r)] (33)

and substitute it into Eq. (29). As a result, we obtain a second-order partial differential equation for the mean-spherical
intensity J1

0(r):

ΔJ1
0
 (r) − D

−1
3ε (1 − Λ) J1

0
 (r) = εΛf1∇J′1 (r) − D

−1
3εΛJ1

 ′0 (r) . (34)

Here D = [ε(fε1 − Λf1)]−1 is the generalized characteristic of the medium that has the meaning of the radiation diffu-
sion length under the conditions of multiple scattering. With the notation

k
2
 = D

−1
3ε (1 − Λ) ,   F (r) = D

−1
3εΛJ1

 ′0 (r) − εΛf1∇J
 ′1 (r) (35)

Eq. (34) takes the form

ΔJ1
0
 (r) − k

2
J1

0
 (r) = − F (r) . (36)

We will formulate the boundary condition for J1
0(r). Boundary condition (2) for the diffuse intensity expresses

the fact that the scattered radiation which would be incident on the boundary of the medium is absent. In integral
form it looks like

   ∫ 
(Ω⋅n)>0

  I (r, �) (�⋅n) dΩ = 0 ,   r = rΓ ,   n = nΓ . (37)
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We rearrange Eq. (37) by the scheme applied to the RTE and make use of Eq. (33) at r = rΓ. As a result, Eq. (37)
is reduced to a system of two equations:

J1
0
 (r) + 

4
3

 (n⋅J1
 (r)) = 0 ,   r = rΓ ,   n = nΓ ; (38)

J
1
 (r) = − 

1
ε (fε1 − Λf1)

 ∇J1
0
 (r) ,   r = rΓ , (39)

where J1
1(r)  = ⏐⏐G1

1Y1
1
⏐⏐ΓJG1

1 (r); J2
1(r)  = ⏐⏐G1

1Y1
1
⏐⏐ΓJG2

1 (r); J3
1(r)  = ⏐⏐G1

0Y1
0
⏐⏐ΓJG3

1 (r); ⏐⏐Gl
mYl

m
⏐⏐Γ = ∫ 

0

1

 ∫ 
0

2π

Gl
∗m(μ, ϕ)Yl

m(μ, ϕ)

dμdϕ is the binorm of the hemisphere of directions (�n) > 0 at the boundary of the medium. Substitution of Eq. (39)
into Eq. (38) leads to the boundary condition of the third kind;

n∇J1
0
 (r) − ηJ1

0(r) = 0 ,   r = rΓ ,    n = nΓ , (40)

where η = (3 ⁄ 4)D−1 is the generalized parameter of the optical properties of the medium depending on the kind of
the scattering indicatrix. Thus, in the basis of the G functions, boundary condition (40) follows strictly from Eq. (2)
and replaces the well-known Marshack’s, Mark’s, and Davidson’s approximate formulations [3].

Equation (36) with boundary condition (40) determines the boundary-value problem of the theory of radiation
transfer for the spherical-mean intensity J1

0(r). It admits an analytical solution which is easily written in the form of a
double series in eigenfunctions; however, such a form of representation presupposes an analysis of its convergence. At
the same time, the solution given below has a closed form. It is based on the Green function for a three-dimensional
boundary-value problem.

Solution of the Boundary-Value Problem for a Second-Order Partial Differential Equation. We will use
the method of separation of variables [9] and represent J1

0(r) as the product X(x)Y(y)Z(z), and thus we will reduce the
boundary-value problem in partial derivatives (36), (40) to a system of boundary-value problems for one-dimensional
functions X(x), Y(y), and Z(z). We will write the boundary-value problems for the functions X(x), Y(y), and Z(z) for
ordinary differential equations of the type of the modified Helmholtz equation:

d
2
X (x)
dx

2  − λx
2
X (x) = 0 ;   

dX (x)
dx

 − ηX (x) = 0 ,   x = 0 ;   
dX (x)

dx
 + ηX (x) = 0 ,   x = a ; (41)

d
2
Y (y)
dy

2  − λy
2
Y (y) = 0 ;   

dY (y)
dy

 − ηY (y) = 0 ,   y = 0 ;   
dY (y)

dy
 + ηY (y) = 0 ,   y = b ; (42)

d
2
Z (z)

dz
2  − λz

2
Z (z) = 0 ;   

dZ (z)
dz

 − ηZ (z) = 0 ,   z = 0 ;   
dZ (z)

dz
 + ηZ (z) = 0 ,   z = c . (43)

Here λx
2, λy

2, λz
2 = k2 − λx

2 − λy
2 are the separation coefficients. We will find the Green function G(x, x′) of the bound-

ary value problem (41) by taking advantage of the method of variation of arbitrary constants. The general solution of
Eq. (41) (the subscript at λ is omitted) will be written in the form

X (x) = C1 (x′) exp (λx) + C2 (x′) exp (− λx) , (44)

where C1(x′) and C2(x′) are variable coefficients. Allowance for the conditions on the boundaries x = 0 and x = a, as
well as of the conditions of the solution continuity and of the jump of the derivative at the point x = x′ leads to an
inhomogeneous system of four algebraic equations:
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C1
0
 (x′) (λ − η) + C2

0
 (x′) (− λ − η) = 0 ,

C1
a
 (x′) [λ exp (λa) + η exp (λa)] + C2

a
 (x′) [− λ exp (− λa) + η exp (− λa)] = 0 ,

C1
0
 (x′) [− exp (λx′)] + C2

0
 (x′) [− exp (− λx′)] + C1

a
 (x′) exp (λx′) + C2

a
 (x′) exp (− λx′) = 0 ,

C1
a
 (x′) [− λ exp (λx′)] + C2

a
 (x′) [λ exp (− λx′)] + C1

a
 (x′) [λ exp (λx′)] + C2

a
 (x′) [− λ exp (− λx′)] = − 1 .

(45)

We will calculate the unknown coefficients C1
0(x′), C2

0(x′), C1
 a(x′), and C2

 a(x′) and substitute them into Eq.
(44). As a result of a number of transformations we will obtain an expression for the Green function:

G (x, x′) = 
1
Δ

 
⎧
⎨
⎩

G0 (x, x′) ,   0 < x ≤ x′ ;
Ga (x, x′) ,   x′ ≤ x < a ,

(46)

where G0(x, x′)  = −[(λ + η)2 exp [2λ(x − x′ + a)]  + (λ2 − η2) exp (2λx) + (λ2 − η2) exp [2λ(a − x′)]  + (λ − η)2]
× exp [−λ(x − x′ + a)];  Ga(x, x′)  = −�(λ − η)2 exp [−λ(a − x′)]  + (λ2 − η2) exp [−λ(a − 3x′)]  + (λ2 − η2)
× [exp [−λ(2x − x′ − a)] + (λ + η)2 exp [−λ(2x − 3x′ − a)]� exp [λ(x − 2x′)], Δ = −2λ[(λ + η)2 exp (2λa) − (λ − η)2]
× exp (−λa).

In addition to the arguments x, x′, the Green function (46) contains three parameters λ, η, and a that deter-
mine the optical properties of the medium and the condition on the boundary. The values of λ satisfy the inequalities

λ ≠ 0 ,   λ ≠ 
1
a

 arctanh 
⎡
⎢
⎣
− 

1
2

 
⎛
⎜
⎝

λ
η

 + 
η
λ
⎞
⎟
⎠

⎤
⎥
⎦
 . (47)

It can easily be seen that the Green function (46) is symmetrical relative to the change of the places of the arguments
x and x′. In the simplest particular cases, from Eq. (46) the well-known expressions of the Green functions for the
Dirichlet and Neumann problems follow.

We will invoke the principle of superposition of the influence of source points and write expressions for the
one-dimensional functions X(x), Y(y), and Z(z) in terms of the Green function (46) and F(r′):

 X (x) = ∫ 
x

a

G0 (x, x′) dx′ + ∫ 
0

x

Ga (x, x′) dx′ ,

Y (y) = ∫ 
y

b

G0 (y, y′) dy′ + ∫ 
0

y

Gb (y, y′) dy′ ,

Z (z) = ∫ 
z

c

F (z′) G0 (z, z′) dz′ + ∫ 
0

z

F (z′) Gc (z, z′) dz′ .

(48)

Then the solution of the boundary-value problem (36), (40) for the spherical-mean intensity J1
0(r) is expressed as a

product

J1
0
 (r) = X (x) Y (y) Z (z) . (49)

Analytical Solution of the Radiation Transfer Equation. The components J1
1(r), J2

1(r), and J3
1(r) of the three-

dimensional vector J1(r) will be found, according to (33), by differentiation of the function J1
0(r). As a result we have
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J1
1
 (r) = − 

1
ε (fε1 − Λf1)

 
∂
∂x

 X (x) Y (y) Z (z) , (50)

J2
1
 (r) = − 

1
ε (fε1 − Λf1)

 X (x) ∂
∂y

 Y (y) Z (z) , (51)

J3
1
 (r) = − 

1
ε (fε1 − Λf1)

 
⎡
⎢
⎣
X (x) Y (y) ∂

∂z
 Z (z) − εΛf1J′ (r)

⎤
⎥
⎦
 . (52)

The solutions (49)–(52) obtained satisfy the system of differential equations (29), (31). With allowance for (30), (49)–
(52), we will write expressions for the spatially dependent real components of scattered radiation JG1

0 (r), JG1
1 (r), JG2

1 (r),
and JG3

1 (r) in the expansion of the intensity I(r, �) in the G functions:

JG1
0

 (r) = J1
0
 (r) ,   JG1

1
 (r)  = ⏐⏐G1

1
Y1

1
⏐⏐
−1

 J1
1
 (r) ,   JG2

1
 (r)  = ⏐⏐G1

1
Y1

1
⏐⏐
−1

 J2
1
 (r) ,   JG3

1
 (r)  = ⏐⏐G1

0
Y1

0
⏐⏐
−1

 J3
1
 (r) . (53)

The substitution of Eq. (53) into (32) leads to the sought solution I(r, �) of the boundary-value problem (1), (2) of
the transport theory for a three-dimensional disperse medium with an arbitrary scattering indicatrix x(μ) in the form of
the following expression:

I (r, �) = JG1
0

 (r) ΩG1
0

 (�) + JG1
1

 (r) ΩG1
1

 (�) + JG2
1

 (r) ΩG2
1

 (�) + JG3
1

 (r) ΩG3
1

 (�) . (54)

The result obtained can be conveniently formulated as follows. The radiation transfer equation (1) with bound-
ary condition (2) for a three-dimensional volume of a disperse medium with an arbitrary scattering indicatrix has an
analytical solution for the intensity of diffuse radiation in the form of expansion (54) with coefficients (53) in the
basis of G functions (19) of a finite-dimensional functional space.

Conclusions. An analytical solution of the radiation transfer equation for a three-dimensional volume of a dis-
perse medium with an arbitrary scattering indicatrix has been found. The first presentation of the solution obtained was
made at the International Symposium of the CIS countries "Atmospheric Radiation" in St. Petersburg in 2002 [10].
The earlier unknown system of special G functions, connected with the RTE kernel and endowed with mathematical
and physical properties, has been constructed. The system of G functions for an arbitrary scattering indicatrix is the
simplest system of orthogonal functions the application of which leads to separation of angular and spatial variables
and transformation of the RTE to a system of partial differential equations for spatially dependent characteristics of
scattered radiation. The Green function of the boundary-value problem has been found for the spherical-mean intensity
that ensured the closed character of solution of the RTE for a three-dimensional disperse medium. For an arbitrary real
scattering indicatrix an analytical solution of the RTE has been obtained that has the form of an expansion in the basis
of special G functions in the finite-dimensional functional space.

Analytical solutions for real scattering indicatrices of natural and artificial disperse media can find application
in testing approximate, asymptotic, and numerical methods of transport theory. It appears natural to generalize the
method of G functions to the solution of the vector radiation transfer equation [11, 12].

NOTATION

a, b, c, length, width, and height of a parallelepiped; B1(r, Ω), function of sources; D, length of radiation dif-
fusion under the conditions of multiple scattering F(r), function of sources for a partial differential equation; πF0, flux
of incident radiation; gl(μ), one-dimensional G function; gl

m(μ), associated one-dimensional G function; Gl
m(�), two-di-

mensional G function; G(x, x′), the Green function of the boundary-value problem for the modified Helmholtz equation
in the final interval [0, a]; ⏐⏐Gl

mYl
m
⏐⏐, binorm of orthogonal functions; ⏐⏐Gl

mYl
m
⏐⏐Γ, binorm of orthogonal functions on

the boundary of the medium; I(r, Ω), diffuse radiation intensity; Il
′m(r), coefficients of expansion of the function of

sources; IGl
m (r), coefficients of expansion of the intensity in G functions; Il

′l(r), real components of the coefficients of

531



expansion of the function of sources; Uj(μ), jth initial independent function; ⏐⏐x(μ)⏐⏐
2,  squared norm of the scattering

indicatrix; n, internal normal to the boundary of the medium; JGk
l (r), real components of the coefficients of expansion;

J1
0(r), spherical mean intensity; r, radius vector of a point in space; x′, coordinate of a point source; x(μ), light scat-

tering indicatrix; x1, the first coefficient of expansion of the scattering indicatrix in G functions; xε(μ), indicatrix of
light attenuation; xε1, first coefficient expansion of the attenuation indicatrix in G functions; X(x), Y(y), and Z(z), one-
dimensional functions for representation of the spherical-mean intensity; εz, optical depth; η, parameter of the optical
properties of a medium in the vicinity of the boundary; θ, angle of scattering; ϑ, ϕ, polar and azimuthal angles of a
spherical coordinate system; λx

2, λy
2, and λz

2, coefficients of separation; Ψl(μ), auxiliary function; �0, vector of direc-
tion of the initial light beam; �′, vector of direction of the beam incident on an elementary volume of the medium;
�, unit vector of the direction of scattered radiation; ΩGk

l (�), components of basis vector �G
′(�) in a three-dimen-

sional subspace; �G
1 (�), radius vector of the characteristic surface in a three-dimensional subspace. Subscripts: Γ,

boundary; ε, refers to attenuation.
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